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Introduction
Event cameras offer microsecond temporal resolution and ro-
bustness to challenging conditions, but suffer from limited
training data for monocular depth estimation.
Key Challenges:
• Data Scarcity. Lack of large-scale event datasets with

dense depth annotations for training.
• Sparse Information. Events only trigger at texture bound-

aries and moving objects.
• Domain Gap. Limited transferability from image-based

models to event representations.

Key Contributions:
• Cross-Modal Distillation: Leverage VFMs to generate

dense proxy labels effectively.
• Robustness Improvement: Cast image-based models to

event domain through fine-tuning.
• Unified Approach: Novel DepthAnyEvent-R with tempo-

ral modeling via ConvLSTM.
• State-of-the-Art: Superior performance on MVSEC &

DSEC benchmark datasets.
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Figure 3. Labels Distillation from Frame-Based Vision Foundation Model. Given the availability of aligned color and event modalities,
e.g., collected by a DAVIS346B sensor, we can exploit a VFM to extract proxy labels from the color images, resulting in much dense
supervision compared to the one provided by semi-dense LiDAR annotations.
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Figure 4. Proposed Recurrent VFM. Our DepthAnyEvent-R model processes image patches with positional encoding through multiple
transformer stages that produce multi-scale feature maps Fs. These features are combined with hidden states Hi

s in ConvLSTM modules
Rs to incorporate temporal information from previous event stacks, generating enhanced feature maps F̂s and updated hidden states Hi+1

s .
A hierarchical fusion process integrates features from different scales to predict the final depth prediction F̂∗.

where Rk = D̂k − D̂∗
k is the difference of maps at scale k

and Mk is the set of valid pixels at scale k.
To ensure alignment, frame and event cameras must be

calibrated – intrinsically done in the DAVIS camera – and
events are sliced from the frame’s acquiring timestamp.

4.2. Casting VFMs to the Event Domain

Frame-based monocular depth models cannot be used di-
rectly on events, given the diverse nature of the latter.
Hence, to adapt their capabilities to the event domain, we
choose an appropriate event representation that can reduce
the gap between frames and events encoding. Furthermore,
we exploit the sequential nature of temporal events, propos-
ing a novel recurrent architecture of DAv2.

Choosing the Right Event Representation. The events
stream contains spatial and temporal information; hence,
a good event representation should capture both to ensure
limited loss of information. Since monocular models natu-
rally process RGB frames – i.e., they produce a depth map
given an image I ∈ RW×H×3 as input – we have to choose
an event representation that encodes both spatial and tem-
poral requirements within an RGB frame to pursue minimal
modifications of the pre-trained VFM.

Purposely, the Tencode [16] representation fits with our
aim. Consequently, starting from a sliced event history Etd ,

either using SBT or SBN [22], Tencode encodes Etd into a
stack E as follows:

E(xk, yk) =

{
(1, td−tk

∆T , 0) if pk = 1

(0, td−tk
∆T , 1) if pk = −1

(4)

where ek = (xk, yk, pk, tk) ∈ Etd is the k-th event of Etd
and ∆T is the time interval of event slice Etd .

VFM for Events. Although the Tencode representation
significantly differs from a conventional RGB image of the
same scene, we propose to adapt a pre-trained VFM to deal
with the event domain through fine-tuning with event data
using the Tencode representation. For this purpose, we use
as the VFM a vanilla DAv2 ViT-S for our experiments. We
dubbed the model as DepthAnyEvent.

Recurrent VFM for Events. Additionally, given the se-
quence nature of the event stream, Recurrent Neural Net-
works (RNNs) could encode previous features extracted
from past event stacks into a hidden state [15, 21]. At each
iteration, the recurrent module can update the hidden state
with the features extracted from the current stack, generat-
ing a new hidden state for the next iteration.

However, monocular depth models typically lack a re-
current module since they are designed to work with single-
frame instances. Hence, for our purposes, this could hinder
the quality of predictions, especially during static scenes
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rectly on events, given the diverse nature of the latter.
Hence, to adapt their capabilities to the event domain, we
choose an appropriate event representation that can reduce
the gap between frames and events encoding. Furthermore,
we exploit the sequential nature of temporal events, propos-
ing a novel recurrent architecture of DAv2.

Choosing the Right Event Representation. The events
stream contains spatial and temporal information; hence,
a good event representation should capture both to ensure
limited loss of information. Since monocular models natu-
rally process RGB frames – i.e., they produce a depth map
given an image I ∈ RW×H×3 as input – we have to choose
an event representation that encodes both spatial and tem-
poral requirements within an RGB frame to pursue minimal
modifications of the pre-trained VFM.
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where ek = (xk, yk, pk, tk) ∈ Etd is the k-th event of Etd
and ∆T is the time interval of event slice Etd .

VFM for Events. Although the Tencode representation
significantly differs from a conventional RGB image of the
same scene, we propose to adapt a pre-trained VFM to deal
with the event domain through fine-tuning with event data
using the Tencode representation. For this purpose, we use
as the VFM a vanilla DAv2 ViT-S for our experiments. We
dubbed the model as DepthAnyEvent.

Recurrent VFM for Events. Additionally, given the se-
quence nature of the event stream, Recurrent Neural Net-
works (RNNs) could encode previous features extracted
from past event stacks into a hidden state [15, 21]. At each
iteration, the recurrent module can update the hidden state
with the features extracted from the current stack, generat-
ing a new hidden state for the next iteration.

However, monocular depth models typically lack a re-
current module since they are designed to work with single-
frame instances. Hence, for our purposes, this could hinder
the quality of predictions, especially during static scenes

• Teacher VFM on RGB Frames. A pre-trained Visual Foundation Model (DAv2 ViT-Large) processes spatially aligned input
frames to generate dense proxy depth labels.

• Event-based Student Model. The student takes aligned event stacks as input and predicts a depth map.
• Cross-Modal Distillation. Knowledge is effectively transferred from the RGB teacher to the event-based student model,

enabling robust training without large-scale annotated event datasets.

Proposed Architectures

• Event Representation with Tencode. En-
code spatio-temporal event slices into a 3-
channel representation, reducing the gap
with RGB frames and allowing minimal
changes to pre-trained VFMs.

• Adapting VFMs to Events. Fine-tune
a pre-trained DAv2 ViT-S backbone on
event data using the Tencode representa-
tion strategy, yielding our adapted model
DepthAnyEvent.

• Recurrent VFM for Events. Extend
DepthAnyEvent with multi-scale ConvL-
STM modules to effectively exploit tem-
poral cues across sequential event stacks,
producing the enhanced recurrent model
DepthAnyEvent-R.

Image To Patches

Positional Encoding

Transformer Transformer Transformer Transformer

Reassemble Reassemble Reassemble Reassemble

ConvLSTM ConvLSTM ConvLSTM ConvLSTM

FusionFusionFusionFusionHead

Final Prediction

Experimental Results
Zero-Shot Generalization: Trained on EventScape only, tested on MVSEC and DSEC without any fine-tuning.

Method MVSEC DSEC

AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑ AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑
E2Depth 0.527 1.122 7.894 0.363 0.395 0.334 13.258 0.409
EReFormer 0.518 1.012 8.423 0.361 0.297 0.195 11.608 0.524
DepthAnyEvent 0.466 0.976 7.824 0.408 0.297 0.186 11.072 0.519
DepthAnyEvent-R 0.469 0.946 8.064 0.428 0.276 0.165 10.942 0.555

Fine-tuned Performance. Trained on EventScape and then further fine-tuned on MVSEC and DSEC datasets separately.

Method MVSEC DSEC

AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑ AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑
E2Depth 0.420 0.806 7.268 0.432 0.253 0.130 10.119 0.574
EReFormer 0.511 1.057 8.373 0.391 0.286 0.208 11.369 0.569
DepthAnyEvent 0.373 0.715 6.627 0.471 0.201 0.079 8.880 0.664
DepthAnyEvent-R 0.365 0.691 6.465 0.489 0.191 0.070 8.618 0.691

Supervised vs Distilled Models: Trained on EventScape and then fine-tuned on MVSEC and DSEC datasets separately, either
through distillation or on ground-truth depth labels.

Method MVSEC DSEC

AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑ AbsRel ↓ SqRel ↓ RMSE ↓ δ1 ↑
DepthAnyEvent Synth 0.466 0.976 7.824 0.408 0.297 0.186 11.072 0.519
DepthAnyEvent Distilled 0.397 0.771 6.910 0.461 0.213 0.095 8.930 0.662
DepthAnyEvent Supervised 0.373 0.715 6.627 0.471 0.201 0.079 8.880 0.664
DepthAnyEvent-R Synth 0.469 0.946 8.064 0.428 0.276 0.165 10.942 0.555
DepthAnyEvent-R Distilled 0.399 0.781 6.830 0.462 0.226 0.111 9.310 0.638
DepthAnyEvent-R Supervised 0.365 0.691 6.465 0.489 0.191 0.070 8.618 0.691

Qualitative Results


