

Depth Any Event: A Cross-Modal Distillation Paradigm for Event-Based Monocular Depth Estimation

Luca Bartolomei*,†, Enrico Mannocci†, Fabio Tosi†, Matteo Poggi*,†, Stefano Mattoccia*,†

University of Bologna, †Department of Computer Science and Engineering, *Advanced Research Center on Electronic System (ARCES)

Introduction

Event cameras offer microsecond temporal resolution and robustness to challenging conditions, but suffer from limited training data for monocular depth estimation.

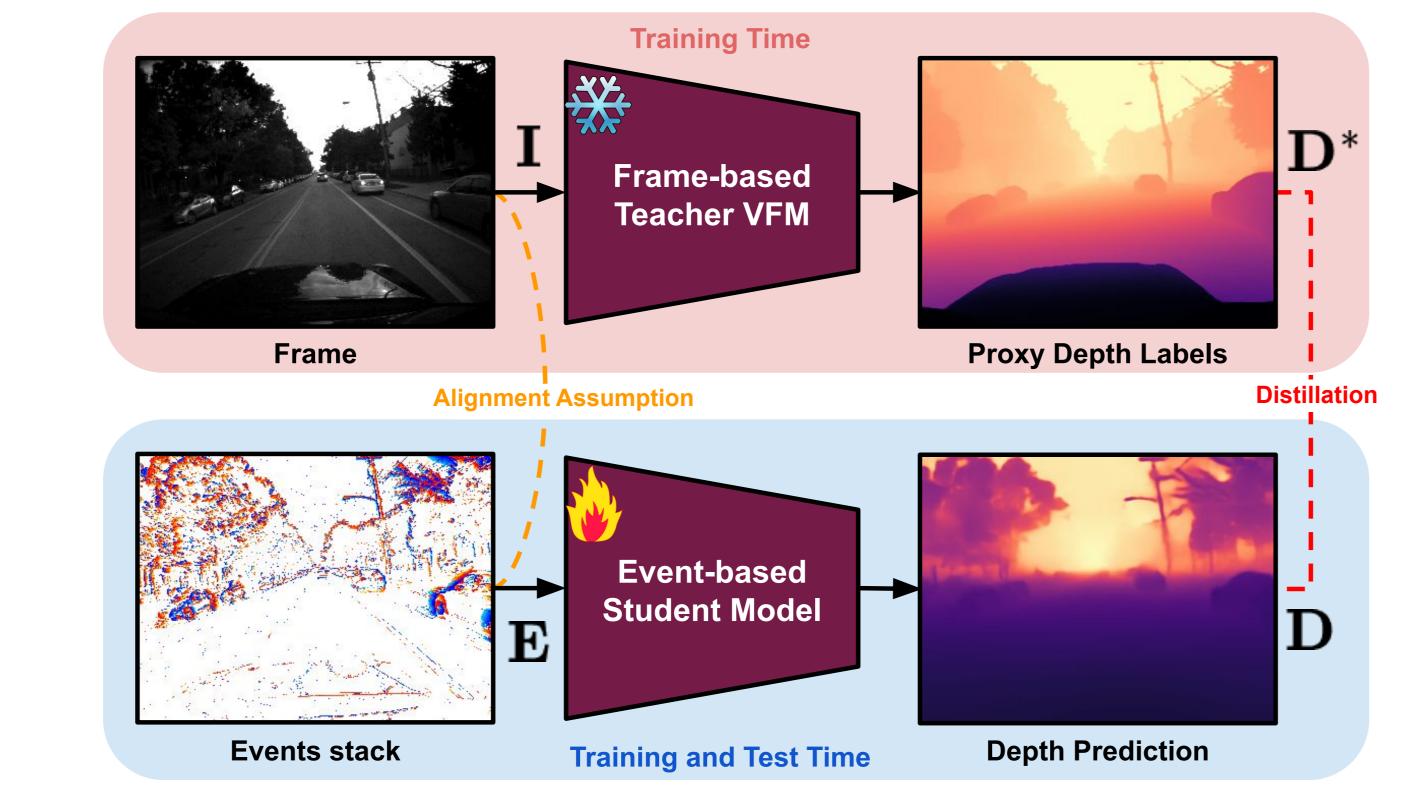
Key Challenges:

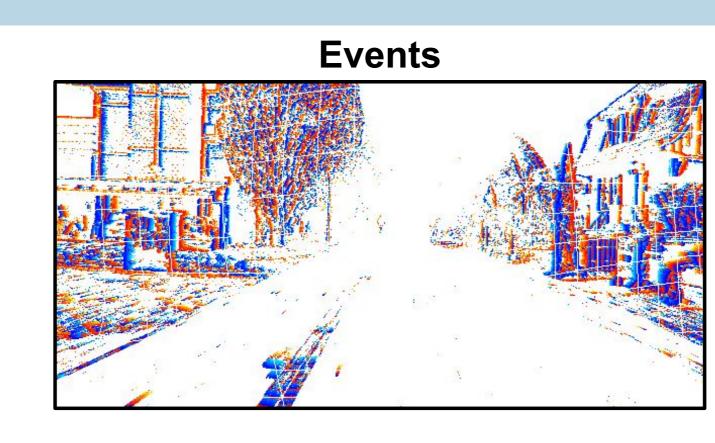
- Data Scarcity. Lack of large-scale event datasets with dense depth annotations for training.
- Sparse Information. Events only trigger at texture boundaries and moving objects.
- Domain Gap. Limited transferability from image-based models to event representations.

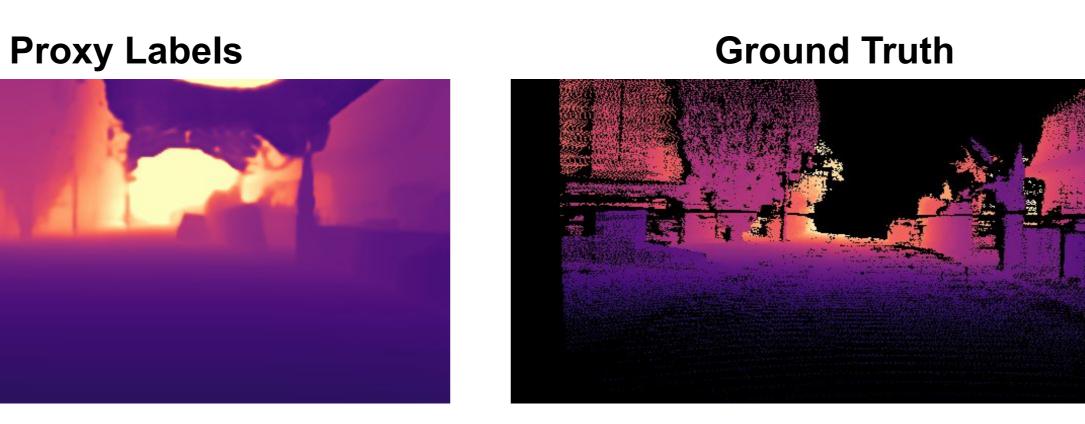
Key Contributions:

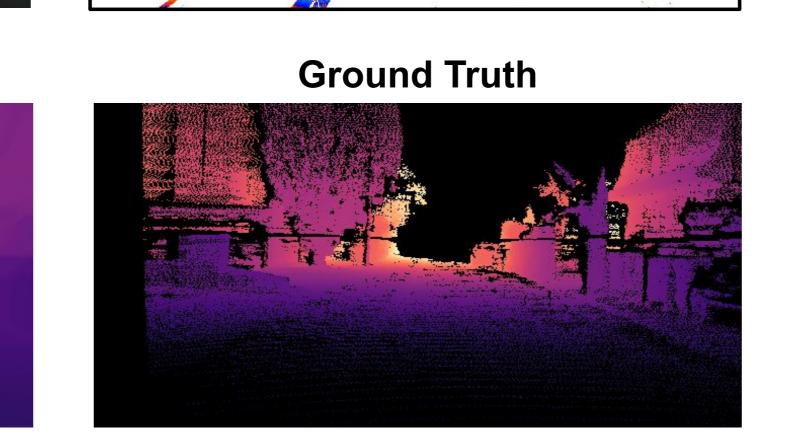
- Cross-Modal Distillation: Leverage VFMs to generate dense proxy labels effectively.
- Robustness Improvement: Cast image-based models to event domain through fine-tuning.
- Unified Approach: Novel DepthAnyEvent-R with temporal modeling via ConvLSTM.
- State-of-the-Art: Superior performance on MVSEC & DSEC benchmark datasets.

Cross-Modal Distillation Strategy

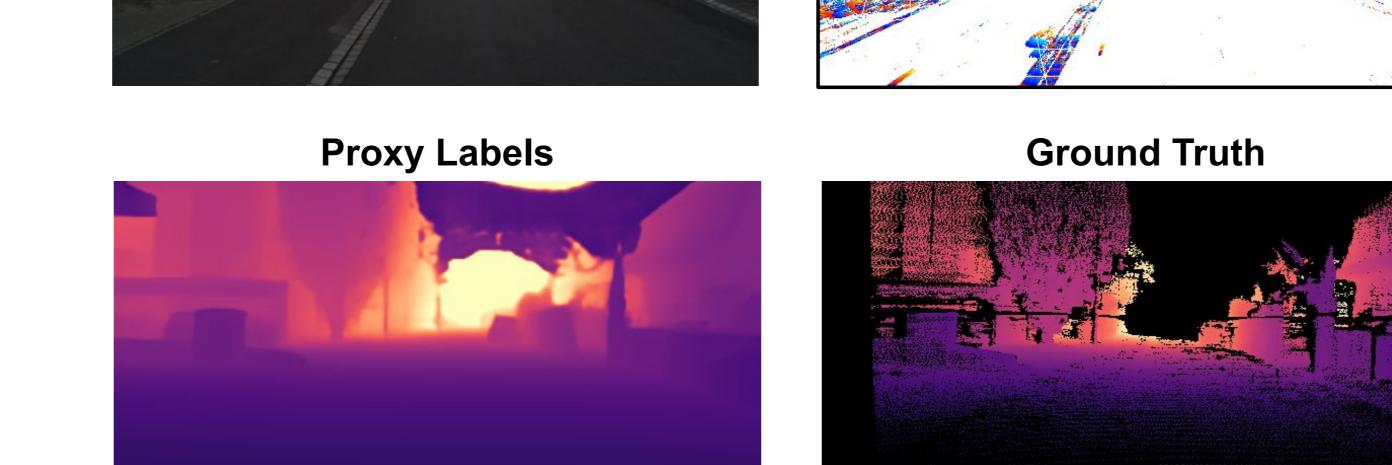






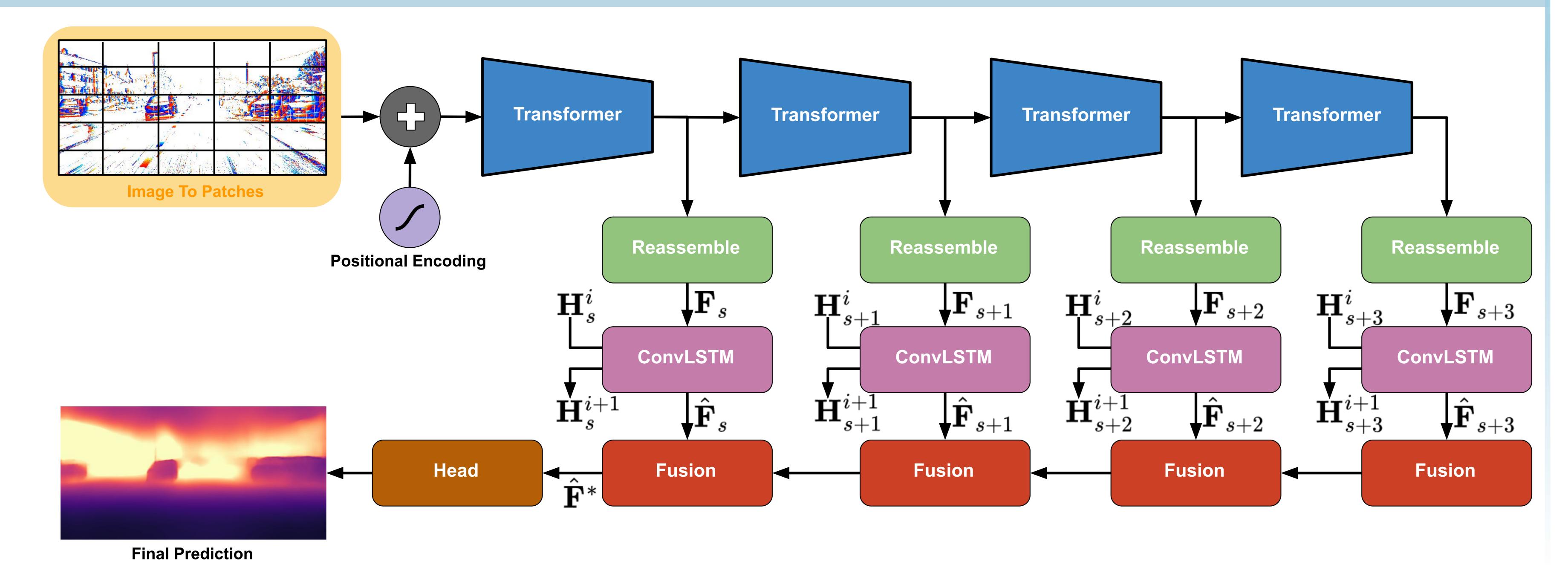


- Teacher VFM on RGB Frames. A pre-trained Visual Foundation Model (DAv2 ViT-Large) processes spatially aligned input frames to generate dense proxy depth labels.
- Event-based Student Model. The student takes aligned event stacks as input and predicts a depth map.
- Cross-Modal Distillation. Knowledge is effectively transferred from the RGB teacher to the event-based student model, enabling robust training without large-scale annotated event datasets.



Proposed Architectures

- Event Representation with Tencode. Encode spatio-temporal event slices into a 3channel representation, reducing the gap with RGB frames and allowing minimal changes to pre-trained VFMs.
- Adapting VFMs to Events. Fine-tune a pre-trained DAv2 ViT-S backbone on event data using the Tencode representation strategy, yielding our adapted model DepthAnyEvent.
- Recurrent VFM for Events. Extend DepthAnyEvent with multi-scale ConvL-STM modules to effectively exploit temporal cues across sequential event stacks, producing the enhanced recurrent model



Experimental Results

Zero-Shot Generalization: Trained on EventScape only, tested on MVSEC and DSEC without any fine-tuning.

Method	MVSEC				DSEC				
TVICTIOG	AbsRel↓	SqRel ↓	RMSE ↓	$\delta_1 \uparrow$	AbsRel↓	SqRel↓	RMSE ↓	$\delta_1 \uparrow$	
E2Depth	0.527	1.122	7.894	0.363	0.395	0.334	13.258	0.409	
EReFormer	0.518	1.012	8.423	0.361	0.297	0.195	11.608	0.524	
DepthAnyEvent	0.466	0.976	7.824	0.408	0.297	0.186	11.072	0.519	
DepthAnyEvent-R	0.469	0.946	8.064	0.428	0.276	0.165	10.942	0.555	

Fine-tuned Performance. Trained on EventScape and then further fine-tuned on MVSEC and DSEC datasets separately.

Method	MVSEC				DSEC				
	AbsRel↓	SqRel↓	RMSE ↓	$\delta_1 \uparrow$	AbsRel↓	SqRel↓	RMSE ↓	$\delta_1 \uparrow$	
E2Depth	0.420	0.806	7.268	0.432	0.253	0.130	10.119	0.574	
EReFormer	0.511	1.057	8.373	0.391	0.286	0.208	11.369	0.569	
DepthAnyEvent	0.373	0.715	6.627	0.471	0.201	0.079	8.880	0.664	
DepthAnyEvent-R	0.365	0.691	6.465	0.489	0.191	0.070	8.618	0.691	

Supervised vs Distilled Models: Trained on EventScape and then fine-tuned on MVSEC and DSEC datasets separately, either through distillation or on ground-truth depth labels.

Method		MVS]	EC	DSEC				
TVICTIOG	AbsRel↓	SqRel ↓	RMSE ↓	$\delta_1 \uparrow$	AbsRel↓	SqRel ↓	RMSE ↓	$\delta_1 \uparrow$
DepthAnyEvent Synth	0.466	0.976	7.824	0.408	0.297	0.186	11.072	0.519
DepthAnyEvent Distilled	0.397	0.771	6.910	0.461	0.213	0.095	8.930	0.662
DepthAnyEvent Supervised	0.373	0.715	6.627	0.471	0.201	0.079	8.880	0.664
DepthAnyEvent-R Synth	0.469	0.946	8.064	0.428	0.276	0.165	10.942	0.555
DepthAnyEvent-R Distilled	0.399	0.781	6.830	0.462	0.226	0.111	9.310	0.638
DepthAnyEvent-R Supervised	0.365	0.691	6.465	0.489	0.191	0.070	8.618	0.691

Qualitative Results

